www.diseases-diagnosis.com Homepage Diseases Symptoms Diseases Diagnosis Diseases Treatment Diseases Living Care Diseases Prevention Diseases Research
March 26, 2016
Table of Contents

1 Introduction
dielectric spectroscopy



Dielectric spectroscopy (sometimes called Electrical impedance|impedance spectroscopy), and also known as Electrochemical Impedance Spectroscopy, measures the dielectric properties of a medium as a function of frequency. It is based on the interaction of an external field with the electric Electric dipole moment|dipole moment of the sample, often expressed by permittivity.

It is also an experimental method of characterizing electrochemical systems. This technique measures the Electrical impedance|impedance of a system over a range of frequencies, and therefore the frequency response of the system, including the energy storage and dissipation properties, is revealed. Often, data obtained by EIS is expressed graphically in a Bode plot or a Nyquist plot.

Impedance is the opposition to the flow of alternating current (AC) in a complex system. A passive complex electrical system comprises both energy dissipater (resistor) and energy storage (capacitor) elements. If the system is purely resistive, then the opposition to AC or direct current (DC) is simply Electrical resistance|resistance.

Almost any physico-chemical system, such as electrochemical cells, mass-beam oscillators, and even biological tissue possesses energy storage and dissipation properties. EIS examines them.

This technique has grown tremendously in stature over the past few years and is now being widely employed in a wide variety of scientific fields such as fuel cell testing, biomolecular interaction, and microstructural characterization. Often, EIS reveals information about the reaction mechanism of an electrochemical process: different reaction steps will dominate at certain frequencies, and the frequency response shown by EIS can help identify the rate limiting step.

Text books on this subject are only beginning to emerge on a larger scale, perhaps the most popular text book on EIS is . A more recent text is . French text books are available ,.

Dielectric mechanisms

There are a number of different dielectric mechanisms, connected to the way a studied medium reacts to the applied field (see the figure illustration). Each dielectric mechanism is centered around its characteristic frequency, which is the reciprocal of the characteristic time of the process. In general, dielectric mechanisms can be divided into dielectric relaxation|relaxation and resonance processes. The most common, starting from high frequencies, are:

Electronic polarization

This resonant process occurs in a neutral atom when the electric field displaces the electron density relative to the Atomic nucleus|nucleus it surrounds.

This displacement occurs due to the equilibrium between restoration and electric forces.
Electronic polarization may be understood by assuming an atom as a point nucleus surrounded by spherical electron cloud of uniform charge density.

Atomic polarization

Atomic polarization is observed when the electronic cloud is deformed under the force of the applied field, so that the negative and positive charge are formed. This is a resonant process.

Dipole relaxation

This originates from permanent and induced dipoles aligning to an electric field. Their orientation polarisation is disturbed by thermal noise (which mis-aligns the dipole vectors from the direction of the field), and the time needed for dipoles to relax is determined by the local viscosity. These two facts make dipole relaxation heavily dependent on temperature and chemical surrounding.

Ionic relaxation

Ionic relaxation comprises ionic conductivity and interfacial and space charge relaxation. Ionic conductivity predominates at low frequencies and introduces only losses to the system. Interfacial relaxation occurs when charge carriers are trapped at interfaces of heterogeneous systems. A related effect is Maxwell-Wagner-Sillars polarization, where charge carriers blocked at inner dielectric boundary layers (on the mesoscopic scale) or external electrodes (on a macroscopic scale) lead to a separation of charges. The charges may be separated by a considerable distance and therefore make contributions to the dielectric loss that are orders of magnitude larger than the response due to molecular fluctuations.

Dielectric relaxation

Dielectric relaxation as a whole is the result of the movement of dipoles (dipole relaxation) and electric charges (ionic relaxation) due to an applied alternating field, and is usually observed in the frequency range 102-1010 Hz. Relaxation mechanisms are relatively slow compared to resonant electronic transitions or molecular vibrations, which usually have frequencies above 1012 Hz.



For a redox reaction
R \leftrightarrow O + e, without mass-transfer limitation, the relationship between the current density and the electrode overpotential is given by the Butler-Volmer equation:

j_\textt=j_0\left(\exp(\alpha_\texto\,f\, \eta)-\exp(-\alpha_\textr\,f\,\eta)\right)


\eta=E-E_\texteq ,\;f=F/(R\,T),\;\alpha_\texto+\alpha_\textr=1.
j_0 is the exchange current density and \alpha_\texto and \alpha_\textr are the symmetry factors.

The curve j_\textt\; vs.\; E is not a straight line (Fig. 1), therefore a redox reaction is not a linear system .

Dynamic behavior
Faradaic impedance

Let us suppose that the Butler-Volmer relationship correctly describes the dynamic behavior of the redox reaction :

j_\textt(t)=j_\textt(\eta(t))=j_0\,\left(\exp(\alpha_\texto\,f\, \eta(t))-\exp(-\alpha_\textr\,f\,\eta(t))\right)

Dynamic behavior of the redox reaction is characterized by the so-called charge transfer resistance defined by :

R_\textct=\frac1\partial j_\textt/\partial \eta =
\frac1f\,j_0\,\left(\alpha_\texto\,\exp(\alpha_\texto\,f\, \eta)+\alpha_\textr\,\exp(-\alpha_\textr\,f\, \eta) \right)

The value of the charge transfer resistance changes with the overpotential. For this simplest example the Faradaic impedance is reduced to a resistance. It is worthwhile to notice that:

R_\textct = \frac1f\,j_0

for \eta = 0 .

Double layer capacitance

An electrode | electrolyte interface behaves like a capacitance called Electrical double layer|electrochemical double-layer capacitance C_\textdl. The equivalent electrical circuit for the redox reaction taking account of the double-layer capacitance is shown in Fig. 2. Another analog circuit commonly used to model the electrochemical double-layer is called a constant phase element.

The electrical impedance of this circuit is easily obtained remembering the impedance of a capacitance which is given by :

Z_\textdl(\omega) =\frac1\texti\,\omega\, C_\textdl

where \omega is the angular frequency of a sinusoidal signal (rd/s), and \scriptstyle \texti=\sqrt-1 .
It is obtained :

Z(\omega)=\fracR_\textt1+R_\textt\,C_\textdl\,\texti \,\omega

Nyquist diagram of the impedance of the circuit shown in Fig. 2 is a semicircle with a diameter \scriptstyleR_\textt and an angular frequency at the apex equal to \scriptstyle1/(R_\textt\,C_\textdc) (Fig. 3). Others representations, Bode or Black plans can be used .

Ohmic resistance

The ohmic resistance R_\Omega appears in series with the electrode impedance of the reaction and the Nyquist diagram is translated to the right.

Measurement of the impedance parameters

Plotting the Nyquist diagram with a potentiostat and an impedance analyzer, most often included in modern potentiostats, allows the user to determine charge transfer resistance, double layer capacitance and ohmic resistance. The exchange current density j_0 can be easily determined measuring the impedance of a redox reaction for \eta=0.

Nyquist diagrams are made of several arcs for reaction more complex than redox reaction and with mass-transfer limitation.

See also

  • loss tangent


See also

  • Debye relaxation

  • Dipole

  • Permittivity

  • Ellipsometry

  • Linear response function

  • Kramers???Kronig relation

  • Green???Kubo relations

  • Electrochemistry

  • Potentiostat

Category:Electric and magnetic fields in matter

ca:Espectrosc??pia d'imped??ncia electroqu??mica
de:Dielektrische Spektroskopie
es:Espectroscopia diel??ctrica
fa:????????????????? ?????????????? ??????????????????????????
fr:Spectroscopie di??lectrique
he:???????????? ???????? ????????????
pl:Spektroskopia dielektryczna
pt:Espectroscopia diel??ctrica
sl:dielektri??na spektroskopija

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "dielectric spectroscopy".

Last Modified:   2010-11-30

All informatin on the site is © www.diseases-diagnosis.com 2002-2011. Last revised: January 2, 2011
Are you interested in our site or/and want to use our information? please read how to contact us and our copyrights.
To let us provide you with high quality information, you can help us by making a more or less donation: